Influence of abrasive particle size on surface properties of flowable composites.
نویسندگان
چکیده
The purpose of this investigation was to measure and compare both the surface roughness and gloss of flowable composites polished with standardized silicone carbide (SiC) papers. Four flowable and two conventional composites were used in this study. Polymerized specimens were subjected to a polishing procedure comprising 12 sequential steps from coarser to finer grits of SiC paper. At the initial polishing stage, flowable composites were more sensitive to the size of the polishing particles and thus yielded surfaces rougher than the conventional composites. Surface roughness became stable when polishing particles less than 13 microm size were used. However, although surface roughness was reduced, an esthetic gloss quality was not achieved on the resultant polished surface. On the influence of filler shape, composites with spherical fillers seemed to have the upper-hand advantage of attaining a high gloss by polishing. On the influence of polishing particle size, it was suggested that polishing should be completed with polishing particles less than 12 microm size so as to achieve clinically satisfactory surface roughness and gloss.
منابع مشابه
Effect of Carbide Particle Size on the Microstructure, Mechanical properties, and Wear Behavior of HVOF-sprayed WC-17% Co Coatings
This study investigates the effect of carbide particle size on the microstructure, mechanical properties, and abrasive wear resistance of WC-17%Co HVOF-sprayed coatings. The characteristics of WC-1, WC-2, and WC-3 coatings with carbide sizes of 1 µm, 0.9 µm, and 0.5 µm, respectively, were also investigated. WC-1 coating experienced the maximum carbon loss of 42%, while WC-2 and WC-3 coatings un...
متن کاملAn Experimental Investigation on Surface Roughness and Edge Chipping in Micro Ultrasonic Machining
Surface quality including surface roughness and edge chipping is a key process measure in micro ultrasonic machining (Micro-USM) as an efficient process for micromachining of hard and brittle materials. Process parameters such as ultrasonic vibration amplitude, static load, type of tool material, type and size of abrasive particles and slurry concentration can influence the surface quality. How...
متن کاملAn Experimental Investigation on Surface Roughness and Edge Chipping in Micro Ultrasonic Machining
Surface quality including surface roughness and edge chipping is a key process measure in micro ultrasonic machining (Micro-USM) as an efficient process for micromachining of hard and brittle materials. Process parameters such as ultrasonic vibration amplitude, static load, type of tool material, type and size of abrasive particles and slurry concentration can influence the surface quality. How...
متن کاملStudy on tool wear and surface roughness in end milling of particulate aluminum metal matrix composite: Application of response surface methodology
Metal matrix composites have been widely used in industries, especially aerospace industries, due to their excellent engineering properties. However, it is difficult to machine them because of the hardness and abrasive nature of reinforcement elements like silicon carbide particles (SiCp).In the present study, an attempt has been made to investigate the influence of spindle speed (N), feed rate...
متن کاملEffect of Micro Glass Flake on Morphological and Rheological Behaviour of Epoxy Vinyl Ester Composite Coatings
In the present work, attempts were made to investigate the reinforcement and treatment effect of GF on morphological and rheological behaviour of GF/epoxy vinyl ester composites. GF was incorporated into epoxy vinyl ester resin by sonication, and mechanical agitation. Rheological and morphological properties were studied as a function of particle treatment and size distributions. The dispersion...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dental materials journal
دوره 27 6 شماره
صفحات -
تاریخ انتشار 2008